Inter-Life: Interoperability and Transition

Interoperability

- University of Stirling
- Edge Hill University
- University of Glasgow

The project looks at two scenarios, as well as mobile devices.

The project has a private island in Second Life which provides a safe haven for young people undergoing real-life transitions. The project is working closely with practitioners in HE, but will involve participants from the FE, adult education and secondary sectors later in the project.

LDSE: A Learning Design Support Environment (LDSE) for Teachers and Lecturers

- London School of Economics
- Royal Veterinary College
- University of Oxford
- University London Metropolitan
- University of London

The LDSE project is researching and developing an online environment for teachers to design activities to fit their environment, or their community. The project is working closely with practitioners to develop students' scientific understanding as they carry out a process of inquiry learning inside and outside the classroom, to learn about 21st century science curriculum.

Echoes 2: Improving Children’s Social Interaction through Exploratory Learning in a Multimodal Environment

- University of Wales
- University of Sussex
- University of Strathclyde
- Heriot-Watt University
- University of Birmingham

The Echoes team are developing a system to investigate life-enhancing and learning benefits for typically developing children and children with Asperger’s syndrome (aged 5-7)?

Personal Inquiry (PI): Designing for Evidence-based Enquiry across Formal and Informal Settings of Learning

- Open University
- University of Nottingham

The Personal Inquiry (PI) project uses a range of hardware (such as Asus Eee PCs, data loggers and sensors, GPS devices, haptic devices and digital cameras). The project is cumulating a range of learning evidence to indicate the potential of rapidly advancing classroom technologies are to enhance students’ learning in a meaningful way, then undertake a process of inquiry learning inside and disseminate evidence from the reality of the classroom.

Technology Enhanced Learning

www.tlrp.org/tel
Technology Enhanced Learning

Our aim: to understand and develop the roles of digital technologies in improving the quality of learning and teaching.

The Technology Enhanced Learning phase of the Teaching and Learning Research Programme is a £12m initiative funded jointly by the Economic and Social Research Council and the Engineering and Physical Sciences Research Council of the UK. There are 8 major projects running between 2007 and 2012.

Themes

- Inclusion: work on interdisciplinarity, ethics, technology-enhanced research, and social networks and capacity building.
- Flexibility: enabling the provision of education and skills to learners in affordable and acceptable ways, so that learning opportunities are available in a more seamless environment that can link classroom, home, workplace, and community.
- Productivity: improving the efficiency and effectiveness of education and training.
- Personalisation: transforming the quality of learning, teaching and assessment by exploiting the responsive and adaptive capabilities of advanced digital technologies to achieve a better match with learners’ needs, dispositions and identities.
- SynergyNet: supporting collaborative learning in an immersive environment.
- hapTEL: haptic technology enhanced learning.
- Ensemble: semantic technologies for the enhancement of case-based learning.
- MiGen: intelligent support for mathematical generalisation.

The University of London

Four initial themes were identified at the outset of the programme: in collaboration with learners, teachers and other stakeholders. It seeks to identify and elaborate key educational and computational themes, fostering an interdisciplinary community of researchers that fosters their contribution to both the learning and computing sciences.

The programme supports and extends the work of projects, and the quality of learning and teaching.

Themes

- Flexibility: enabling the provision of education and skills to learners in affordable and acceptable ways, so that learning opportunities are available in a more seamless environment that can link classroom, home, workplace, and community.
- Productivity: improving the efficiency and effectiveness of education and training.
- Personalisation: transforming the quality of learning, teaching and assessment by exploiting the responsive and adaptive capabilities of advanced digital technologies to achieve a better match with learners’ needs, dispositions and identities.
- SynergyNet: supporting collaborative learning in an immersive environment.
- hapTEL: haptic technology enhanced learning.
- Ensemble: semantic technologies for the enhancement of case-based learning.
- MiGen: intelligent support for mathematical generalisation.

The University of London

Four initial themes were identified at the outset of the programme: in collaboration with learners, teachers and other stakeholders. It seeks to identify and elaborate key educational and computational themes, fostering an interdisciplinary community of researchers that fosters their contribution to both the learning and computing sciences.

The programme supports and extends the work of projects, and the quality of learning and teaching.

Themes

- Flexibility: enabling the provision of education and skills to learners in affordable and acceptable ways, so that learning opportunities are available in a more seamless environment that can link classroom, home, workplace, and community.
- Productivity: improving the efficiency and effectiveness of education and training.
- Personalisation: transforming the quality of learning, teaching and assessment by exploiting the responsive and adaptive capabilities of advanced digital technologies to achieve a better match with learners’ needs, dispositions and identities.
- SynergyNet: supporting collaborative learning in an immersive environment.
- hapTEL: haptic technology enhanced learning.
- Ensemble: semantic technologies for the enhancement of case-based learning.
- MiGen: intelligent support for mathematical generalisation.

The University of London
The Technology Enhanced Learning phase of the Teaching and Learning Research Programme is a £12m initiative funded jointly by the Economic and Social Research Council and the Engineering and Physical Sciences Research Council to promote the effective and responsible use of digital technologies in improving the quality of learning and teaching.

Four initial themes were identified at the outset of the programme:

1. Flexibility: enabling the provision of education and skills to be deployed in more open, variable, and accessible ways, so that learning opportunities are available in a more seamless environment that can link classroom, home, workplace, and community.
2. Productivity: enabling the provision of education and skills to better match with learners' needs, dispositions and identities.
3. Personalisation: transforming the quality of learning, teaching and community.
4. Social network and capacity building.

The growing portfolio of cross-programme thematic strands includes cross-disciplinary research into theory and practice of educational technology and social networking to identify means of improving the reach and affordability of education in affordable and acceptable ways.

Themes

- Flexibility: study methods change to suit the learner and the circumstances, whether at home, work or school.
- Productivity: education is more effective and efficient, meeting the needs of learners better at lower cost.
- Personalisation: education becomes more affordable and acceptable, and education is more effective and efficient.
- Social network: learning happens in groups and individuals who are not best served by mainstream methods.

The growing portfolio of cross-programme thematic strands includes work on interdisciplinarity, ethics, technology-enhanced research, learning the pedagogy of choice, and social networks and capacity building.
Our aim is understanding and developing the roles of digital technologies in improving the quality of learning and teaching.

SynergyNet: Supporting Collaborative Learning in an Immersive Environment

SynergyNet is a design for hardware and software systems that can seamlessly integrate with the classroom without intruding on the capacity to deliver instruction. As a result of more than 20 years of development and work on the follow-up projects, a prototype for the system has been developed and tested. The system is designed to work in a number of different settings, from elementary schools to universities, and is expected to be available in the near future.

hapTEL: Haptic Technology Enhanced Learning

hapTEL is developing a mathematical virtual mouth to be used in the classroom to foster higher-order thinking and stimulate curiosity in students to use advanced digital technologies beyond the borders of education. A research team, including teachers and students, is working on this project. The goal is to provide an enhanced learning experience for students as they move from virtual to actual patients.

Ensemble: Semantic Technologies for the Enhancement of Case-Based Learning

The Ensemble project is transforming a virtual learning environment into a realistic simulation for students to train and learn. The project is developing a sophisticated software and hardware system called the Ensemble. The system is designed to be used in a virtual learning environment and is expected to be available in the near future.

MiGen: Intelligent Support for Mathematical Generalisation

MiGen is developing a system that can help students understand complex mathematical concepts, such as algebraic expressions. The system is based on advanced AI techniques and is designed to help students learn the pedagogy of choice.

Themes

Inclusion: improving the reach of education and lifelong learning to groups and individuals who are not best served by mainstream methods.

Personalisation: improving the match with learners’ needs, dispositions and identities.

Flexibility: enabling the provision of education and skills to be deployed in more open, variable, and accessible ways, so as to better meet the needs of learners and employers.

Productivity: improving the efficiency of learning and teaching so as to support better and more effective learning for both students and teachers.

SynergyNet: SynergyNet is a design for hardware and software systems that can seamlessly integrate with the classroom without intruding on the capacity to deliver instruction. As a result of more than 20 years of development and work on the follow-up projects, a prototype for the system has been developed and tested. The system is designed to work in a number of different settings, from elementary schools to universities, and is expected to be available in the near future.

hapTEL: Haptic Technology Enhanced Learning

hapTEL is developing a mathematical virtual mouth to be used in the classroom to foster higher-order thinking and stimulate curiosity in students to use advanced digital technologies beyond the borders of education. A research team, including teachers and students, is working on this project. The goal is to provide an enhanced learning experience for students as they move from virtual to actual patients.

Ensemble: Semantic Technologies for the Enhancement of Case-Based Learning

The Ensemble project is transforming a virtual learning environment into a realistic simulation for students to train and learn. The project is developing a sophisticated software and hardware system called the Ensemble. The system is designed to be used in a virtual learning environment and is expected to be available in the near future.

MiGen: Intelligent Support for Mathematical Generalisation

MiGen is developing a system that can help students understand complex mathematical concepts, such as algebraic expressions. The system is based on advanced AI techniques and is designed to help students learn the pedagogy of choice.
SynergyNet: Supporting Collaborative Learning in an Immersive Environment

SynergyNet is a project to design and utilise immersive software systems to enable learners to work in the classroom without needing to be physically present. By using a virtual environment, a group of learners can work together, even if they are not physically in the same place. This software will be integrated as part of the virtual environment that learners need to use.

The team is currently developing a virtual environment that will allow learners to work collaboratively in the virtual space.

hapTEL: Haptic Technology Enhanced Learning

hapTEL is developing a virtual environment to help students apply knowledge to real-world situations. It will allow students to interact with virtual models and use haptic devices, which provide feedback to the user in the form of force or motion. This will enable students to learn by doing, rather than just reading or listening. The technology is being used to develop a new course on medical education, with plans to expand to other areas in the future.

Ensemble: Semantic Technologies for the Enhancement of Case-Based Learning

 Ensemble is a project that is developing semantic technologies to support case-based learning. It aims to create a semantic web that can be used to store and retrieve information about cases, allowing students to learn from each other's experiences. The project will involve developing a framework for representing case-based knowledge and creating tools to support case-based learning.

MiGen: Intelligent Support for Mathematical Generalisation

MiGen is a project that is developing intelligent systems to support students in learning mathematics. It aims to create a system that can adapt to the individual needs of each student, providing support when needed and guidance when necessary. The system will use machine learning techniques to learn from student behavior and adjust its actions accordingly.

Themes

- Personalisation: adapting the provision of education and training to the individual needs, abilities, and aspirations of learners in both formal and informal settings.
- Flexibility: providing learners with the means, access, and support they need to learn at their own pace and in their own way.
- Productivity: enhancing the efficiency and effectiveness of education and learning.
- Collaboration: facilitating the sharing of knowledge and expertise among learners and educators.
- Adaptability: providing learners with the skills and strategies they need to learn in new and different contexts.
- Inclusivity: ensuring that all learners, regardless of their background or circumstances, can access and benefit from high-quality education and training.
Technology Enhanced Learning

Our aim: to understand and develop the roles of digital technologies in improving the quality of learning and teaching.

The Technology Enhanced Learning phase of the London Knowledge Lab is an £12m initiative funded jointly by the Economic and Social Research Council and the Engineering and Physical Sciences Research Council of the UK. There are 8 major projects running between 2007 and 2012.

Themes

- Flexibility: enabling the provision of education and training that can be deployed in more open, variable, and accessible ways, so that learning opportunities are available in a more seamless environment that can link classroom, home, workplace, and social networks and capacity building.
- Inclusion: personalisation, transforming the quality of learning, teaching, and assessment by exploiting the responsive and adaptive capabilities of advanced digital technologies to achieve a permeable learning environment that can link classroom, home, workplace, and social networks and capacity building.
- Productivity: developing and applying the digital technologies that teachers, students, and patients are already using to further their contribution to both the learning and computing sciences.
- SynergyNet: an Immersive Learning in a Collaborative Environment
 - University of Durham
 - University of Leeds

- hapTEL: Haptic Technology Enhanced Learning
 - Birmingham City University
 - University of Reading
 - King's College London

- Ensemble: Semantic Technologies for the Enhancement of Case-Based Learning
 - University of Stirling
 - University of Essex
 - University of East Anglia
 - City University London
 - University of Liverpool John Moores
 - University of Liverpool

- MiGen: Intelligent Support for Mathematical Generalisation
 - University of London (IOE London and Birkbeck London Knowledge Lab)

SynergyNet is a shared virtual environment of the London Knowledge Lab, situated in the University of London. It seeks to identify and elaborate key educational and computational themes, fostering their contribution to both the learning and computing sciences.

The programme supports and extends the work of projects, and fosters their contribution to both the learning and computing sciences.

hapTEL is developing a knowledge environment that can link classroom, home, workplace, and social networks and capacity building.

Ensemble is developing a sophisticated hardware and software system that can link classroom, home, workplace, and social networks and capacity building.

MiGen is developing a sophisticated hardware and software system that can link classroom, home, workplace, and social networks and capacity building.

Four initial themes were identified at the outset of the programme:

- Flexibility
- Inclusion
- Productivity
- SynergyNet

Themes
Technology Enhanced Learning

Our aim: to understand and develop the roles
digitisation technologies in improving
the quality of learning and teaching.

SynergyNet: Supporting Collaborative Learning in an Immersive Environment

SynergyNet is a design and software system on which the classroom without students is the classroom without students. A long-term test of the idea is to create and establish a virtual learning environment which that group of students, can operate collaboratively. The software tool for that purpose is part of the extended environment that the team plans to create.

The team is currently developing a software tool that will allow students to author digital stories in a variety of languages.

hapTEL: Haptic Technology Enhanced Learning

hapTEL is developing a software tool that best suits the use in the extension of the physical classroom. This creates a simulation for students to use in the form of an actual application of the software to real students.

The team is already working with a group of students, teachers and researchers to extend the software tool to include a ‘virtual’ classroom.

Ensemble: Semantic Technologies for the Enhancement of Case-Based Learning

Ensemble is working on creating a semantic tool that provides a way for students to make sense of the huge amounts of information that exist online and offline in more creative ways.

MiGen: Intelligent Support for Mathematical Generalisation

MiGen is developing a software tool that can help students understand and express mathematical generalisations. This is particularly useful for students who struggle to understand the concept of generalisation.

Themes

Four initial themes were identified at the outset of the programme:

- Flexibility: enabling the provision of education and skills development in more open, variable, and accessible ways, so that learning opportunities are available in a more seamless way
- Personalisation: enabling the provision of education and skills development in more open, variable, and accessible ways, so that learning opportunities are available in a more seamless way
- Synergies: the enhancement of learning, teaching and assessment by exploiting the responsive and adaptive capabilities of advanced digital technologies to achieve a transforming the quality of learning, teaching, and community.
- Productivity: achieving higher output and more effective learning to groups and individuals who are not best served by mainstream methods.

Themes

Four initial themes were identified at the outset of the programme:

- Flexibility: enabling the provision of education and skills development in more open, variable, and accessible ways, so that learning opportunities are available in a more seamless way
- Personalisation: enabling the provision of education and skills development in more open, variable, and accessible ways, so that learning opportunities are available in a more seamless way
- Synergies: the enhancement of learning, teaching, and assessment by exploiting the responsive and adaptive capabilities of advanced digital technologies to achieve a transforming the quality of learning, teaching, and community.
- Productivity: achieving higher output and more effective learning to groups and individuals who are not best served by mainstream methods.

The growing portfolio of cross-programme thematic strands includes: improving the reach of education and lifelong learning to groups and individuals who are not best served by mainstream methods.

what does its aim to generalise to enhance? What if a digital student? They also aim to develop an application that can be used in the classroom.

Our aim: to understand and develop the roles of digital technologies in improving the quality of learning and teaching.

The Programme Director is Professor Richard Noss, University of Durham. The project team includes researchers from University of Reading, King’s College London, Birmingham City University, University of London (IOE London and Birkbeck College London), University of Oxford, University of Stirling, University of Essex, University of East Anglia, City University London, University of Liverpool, and University of Cambridge.

hapTEL is developing a software tool that best suits the use in the extension of the physical classroom. This creates a simulation for students to use in the form of an actual application of the software to real students.

The team is already working with a group of students, teachers and researchers to extend the software tool to include a ‘virtual’ classroom.

Ensemble is working on creating a semantic tool that provides a way for students to make sense of the huge amounts of information that exist online and offline in more creative ways.

MiGen is developing a software tool that can help students understand and express mathematical generalisations. This is particularly useful for students who struggle to understand the concept of generalisation.

Themes

Four initial themes were identified at the outset of the programme:

- Flexibility: enabling the provision of education and skills development in more open, variable, and accessible ways, so that learning opportunities are available in a more seamless way
- Personalisation: enabling the provision of education and skills development in more open, variable, and accessible ways, so that learning opportunities are available in a more seamless way
- Synergies: the enhancement of learning, teaching, and assessment by exploiting the responsive and adaptive capabilities of advanced digital technologies to achieve a transforming the quality of learning, teaching, and community.
- Productivity: achieving higher output and more effective learning to groups and individuals who are not best served by mainstream methods.

The growing portfolio of cross-programme thematic strands includes: improving the reach of education and lifelong learning to groups and individuals who are not best served by mainstream methods.

what does its aim to generalise to enhance? What if a digital student? They also aim to develop an application that can be used in the classroom.

Our aim: to understand and develop the roles of digital technologies in improving the quality of learning and teaching.

The Programme Director is Professor Richard Noss, University of Durham. The project team includes researchers from University of Reading, King’s College London, Birmingham City University, University of London (IOE London and Birkbeck College London), University of Oxford, University of Stirling, University of Essex, University of East Anglia, City University London, University of Liverpool, and University of Cambridge.

hapTEL is developing a software tool that best suits the use in the extension of the physical classroom. This creates a simulation for students to use in the form of an actual application of the software to real students.

The team is already working with a group of students, teachers and researchers to extend the software tool to include a ‘virtual’ classroom.

Ensemble is working on creating a semantic tool that provides a way for students to make sense of the huge amounts of information that exist online and offline in more creative ways.

MiGen is developing a software tool that can help students understand and express mathematical generalisations. This is particularly useful for students who struggle to understand the concept of generalisation.

Themes

Four initial themes were identified at the outset of the programme:

- Flexibility: enabling the provision of education and skills development in more open, variable, and accessible ways, so that learning opportunities are available in a more seamless way
- Personalisation: enabling the provision of education and skills development in more open, variable, and accessible ways, so that learning opportunities are available in a more seamless way
- Synergies: the enhancement of learning, teaching, and assessment by exploiting the responsive and adaptive capabilities of advanced digital technologies to achieve a transforming the quality of learning, teaching, and community.
- Productivity: achieving higher output and more effective learning to groups and individuals who are not best served by mainstream methods.

The growing portfolio of cross-programme thematic strands includes: improving the reach of education and lifelong learning to groups and individuals who are not best served by mainstream methods.
Inter-Life: Interoperability and Transition

Inter-Life aims to harness the power of virtual environments to help young people undergo real-life transitions via desktop computers and mobile devices. The project has a private island in the game Second-Life to investigate life transitions for young people. Second Life provides a safe haven and digital technologies are to enhance students’ learning in a meaningful way, then investigate with practitioners in HE, but will involve participants from the FE, adult education and secondary sectors later in the project.

LDSE: A Learning Design Support Environment (LDSE) for Teachers and Lecturers

The LDSE project is researching and developing an environment for secondary school teachers to design and implement digital technologies. The team, which is based in five UK institutions, is working initially with practitioners in HE, but will involve participants from the FE, adult education and secondary sectors later in the project.

Echoes 2: Improving Children’s Social Interaction through Exploratory Learning in a Multimodal Environment

The Echoes team are developing a safe, stimulating and fun learning environment. The team is developing an environment for typically developing children and children at risk of developing social skills of both children. The team, based across eight UK institutes, are developing an online environment in which a ‘script’ is a dynamic lesson plan implemented on personal technology (where a ‘script’ is a dynamic lesson plan implemented on personal technology (where a ‘script’ is a dynamic lesson plan). The project is to enhance development by co-designing with children’s development while offering a safe, stimulating and fun learning environment.

Personal Inquiry (PI): Designing for Evidence-based Inquiry across Formal and Informal Settings of Learning

The Personal Inquiry (PI) project aims to develop an environment for children in informal and formal settings of learning. The PI project is to develop a methodology for designing an environment for children in informal and formal settings of learning. The aim of the project is to apply the approach of scripted inquiry learning to develop students’ scientific understanding as they carry out a process of inquiry learning inside and outside the classroom, to learn about themselves and the world around them. The aim of the project is to apply the approach of scripted inquiry learning to develop students’ scientific understanding as they carry out a process of inquiry learning inside and outside the classroom, to learn about themselves and the world around them. The aim of the project is to apply the approach of scripted inquiry learning to develop students’ scientific understanding as they carry out a process of inquiry learning inside and outside the classroom, to learn about themselves and the world around them.
Inter-Life: Interoperability and Transition

The Inter-Life project aims to harness the power of digital technologies to help young people undergo real-life transitions for young people.

- University of Stirling
- University of Sheffield
- Edge Hill University
- University of Glasgow

The project has a private island in the game Second-Life to investigate life transitions for young people.

LDSE: A Learning Design Support Environment (LDSE) for Teachers and Lecturers

ECHOES 2: Improving Children’s Social Interaction through Exploratory Learning in a Multimodal Environment

Echoes 2 project is developing a software called Echoes that explores children’s social interaction using artificial intelligence techniques to look at factors such as gaze tracking, touch screens and a range of tools including gesture and haptic devices

- University of London
- University of Edinburgh
- University of Strathclyde
- Heriot-Watt University
- University of Dundee
- University of Birmingham
- University of London

The Echoes team are developing a multimodal environment.

Personal Inquiry (PI): Designing for Evidence-based Enquiry Learning across Formal and Informal Settings of Learning

The Personal Inquiry (PI) project aims to extend the concepts of scripted inquiry learning to informal environments.

- Open University
- University of Nottingham
- University of Edinburgh
- Inset Institute Cardiff
- University of Sussex
- University of Strathclyde
- University of Dundee
- University of Birmingham

The project is working closely with teachers and practitioners in education and secondary sectors later in their design and implementation.

Technology Enhanced Learning

www.tlrp.org/tel
Inter-Life: Interoperability and Transition

The project looks at two scenarios involving gifted and talented and looked-after young people (14-17), and one involving secondary sectors later in their design and implementation. The LDSE project is researching and developing an online environment in the secondary sector, and working closely with practitioners in HE, but will involve participants from the FE, adult education and secondary sectors later in the project.

Echoes 2: Improving Children’s Social Interaction through Exploratory Learning in a Multimodal Environment

How can technology be used to explore the effectiveness and affordances of interactive technologies that are deeply rooted in first design and implemented into the technology? This LDSE project is researching and developing an online environment for children with autism spectrum disorder (ASD). This environment is designed to be engaging, and to provide a safe, stimulating and fun learning experience. The team, based across eight UK institutions, hope to learn about and utilise emerging technologies to enhance development by co-designing the tools with the children.

Personal Inquiry (PI): Designing for Evidence-based Inquiry across Formal and Informal Settings of Learning

The Personal Inquiry (PI) project uses Evidence-based Inquiry (EBI) and CSCL (Computer-supported Collaborative Learning) to investigate how technology can be used to enhance learning for children with Asperger’s syndrome (aged 5-7) and typically developing children and children with complex needs. The project is working closely with teachers to design activities to fit the children’s environment, or their community. The project is working closely with teachers to design activities to fit the children’s environment, or their community. The aim of the project is to apply the approach of scripted inquiry learning in research environments and in the classroom, to learn about and develop tools (PCs, data loggers and sensors, GPS and digital cameras). The project is based on evidence-based inquiry learning (EBI) and CSCL (Computer-supported Collaborative Learning) to investigate how technology can be used to enhance learning for children with Asperger’s syndrome (aged 5-7) and typically developing children and children with complex needs.

LDSE: A Learning Design Support Environment (LDSE) for Teachers and Lecturers

If adequately advanced classroom technologies and rich learning environments are not taken advantage of, then students will not be able to learn as well as in mobile devices. The LDSE project is researching and developing an online environment for children with Asperger’s syndrome (aged 5-7) and typically developing children. The team, which is developing an online environment for children with autism spectrum disorder (ASD), is designed to be engaging and to provide a safe, stimulating and fun learning experience.
Inter-Life: Interoperability and Transition

Inter-Life aims to harness the power of massively multiple online role-playing environments (Massively Multiplayer Online Role-Playing Games) to provide a safe haven for young people. The project has a primary aim of reducing the barriers for young people transitioning to higher education and into society following their time in care. It involves a range of partners from universities, care agencies, and as well as mobile devices.

The project has two projects, one looking at look-after young people (14-17), and another involving gifted and talented young people.

The project looks at two scenarios, one involving look-after young people (14-17) and another involving gifted and talented young people. The project has a private island in Second Life which provides a safe haven for young people transitioning via desktop computers and mobile devices.

LDSE: A Learning Design Support Environment (LDSE) for Teachers and Lecturers

If you are an educational institution and are not effectively using digital technologies, you are missing out. The LDSE project is researching and designing an online environment where practitioners can experiment with a range of tools including gesture and touch learning, virtual reality, gaze tracking, touch screens and haptic devices. The team, which is initially based in five UK institutions, is working to enhance development by co-designing with practitioners.

The LDSE team has a private island in Second Life for teachers to design activities to fit the 21st century science curriculum. The team is developing a software Personal Inquiry Toolkit to guide 11-14 year olds through Personal Inquiry (PI) and develop students' scientific understanding as they carry out a process of inquiry learning inside and outside the classroom, to learn about themselves and the world around them.

Echoes 2: Improving Children’s Social Interaction through Exploratory Learning in a Multimodal Environment

How can technology be used to explore the development of social interactions and their role in children’s development? The Echoes 2 project is investigating this question and developing an online environment where practitioners can experiment with a range of tools including gesture and touch learning, virtual reality, gaze tracking, touch screens and haptic devices. The team, based across eight UK institutions, hope to learn about and enhance development by co-designing with Asperger’s syndrome (aged 5-7) children, typically developing children and children with Asperger’s syndrome (aged 5-7).

The Echoes team are developing a Multimodal Environment for Teachers and Practitioners (MEEP) which will provide a safe, stimulating and fun learning environment. The MEEP environment will involve participants from the FE, adult and, in particular, with the creative use of touch learning, virtual reality, gaze tracking, touch screens and haptic devices.

Personal Inquiry (PI): Designing for Evidence-based Enquiry across Formal and Informal Settings of Learning

The Personal Inquiry (PI) project aims to develop an approach to evidence-based enquiry that is accessible to all learners, in particular, those with special educational needs. The project is developing a software Personal Inquiry Toolkit to guide 11-14 year olds through Personal Inquiry (PI) and develop students' scientific understanding as they carry out a process of inquiry learning inside and outside the classroom, to learn about themselves and the world around them.

The aim of the project is to apply the approach of scripted inquiry learning inside the classroom to develop students' scientific understanding as they carry out a process of inquiry learning inside and outside the classroom, to learn about themselves and the world around them. The Personal Inquiry (PI) project is using a Multimodal Environment for Teachers and Practitioners (MEEP) which will provide a safe, stimulating and fun learning environment. The MEEP environment will involve participants from the FE, adult and, in particular, with the creative use of touch learning, virtual reality, gaze tracking, touch screens and haptic devices.

www.tlrp.org/tel
Inter-Life: Interoperability and Transition

2008-2011
University of Stirling
University of Sheffield
Edge Hill University
University of Glasgow

The project looks at two scenarios, as well as mobile devices.

The project has a private island in Second Life which provides a safe haven for young people undergoing real-life transitions via desktop computers and, in particular, with the creative use of technologies to enhance students' development by co-designing with Asperger's syndrome (aged 5-7)? Typically developing children and children with Down's syndrome (aged 5-7)...

The Echoes team are developing a range of tools including gesture and touch learning through Exploratory Learning in a Multimodal Environment...